Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods

نویسندگان

  • M. Arroyo
  • M. Ortiz
چکیده

We present a one-parameter family of approximation schemes, which we refer to as local maximumentropy approximation schemes, that bridges continuously two important limits: Delaunay triangulation and maximum-entropy (max-ent) statistical inference. Local max-ent approximation schemes represent a compromise—in the sense of Pareto optimality—between the competing objectives of unbiased statistical inference from the nodal data and the definition of local shape functions of least width. Local max-ent approximation schemes are entirely defined by the node set and the domain of analysis, and the shape functions are positive, interpolate affine functions exactly, and have a weak Kronecker-delta property at the boundary. Local max-ent approximation may be regarded as a regularization, or thermalization, of Delaunay triangulation which effectively resolves the degenerate cases resulting from the lack or uniqueness of the triangulation. Local max-ent approximation schemes can be taken as a convenient basis for the numerical solution of PDEs in the style of meshfree Galerkin methods. In test cases characterized by smooth solutions we find that the accuracy of local max-ent approximation schemes is vastly superior to that of finite elements. Copyright 2005 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smooth, second order, non-negative meshfree approximants selected by maximum entropy

We present a family of approximation schemes, which we refer to as second-order maximum-entropy (max-ent) approximation schemes, that extends the first-order local max-ent approximation schemes to second-order consistency. This method retains the fundamental properties of first-order max-ent schemes, namely the shape functions are smooth, non-negative, and satisfy a weak Kronecker-delta propert...

متن کامل

Verification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme

In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...

متن کامل

Time Marching Kernel Approximated PDE Solutions for Meshfree Computational Fluid Dynamics

This paper will address the problem of time marching function approximated solutions inherent in emerging meshfree Computational Fluid Dynamics (CFD) solution techniques. The numerical solutions of partial differential equations (PDEs) of CFD has been dominated by either finite difference methods (FDM), finite element methods (FEM), and finite volume methods (FVM). These methods can be derived ...

متن کامل

Overview and construction of meshfree basis functions: From moving least squares to entropy approximants

In this paper, an overview of the construction of meshfree basis functions is presented, with particular emphasis on moving least-squares approximants, natural neighbour-based polygonal interpolants, and entropy approximants. The use of information-theoretic variational principles to derive approximation schemes is a recent development. In this setting, data approximation is viewed as an induct...

متن کامل

Local maximum entropy shape functions based FE-EFGM coupling

In this paper, a new method for coupling the finite element method (FEM) and the element-free Galerkin method (EFGM) is proposed for linear elastic and geometrically nonlinear problems using local maximum entropy shape functions in the EFG zone of the problem domain. These shape functions possess a weak Kronecker delta property at the boundaries which provides a natural way to couple the EFG an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005